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On compact sets preserving Markov’s inequality, Bernstein-type conditions for a
continuous function to be of class C* are discussed. Also, relationships between the
distribution of zeros of polynomials of best uniform or Z, approximation to a given
function and its differential properties are established. © 1991 Academic Press, Inc.

1. INTRODUCTION

We present in this note some extensions of results given by Bernstein in
the very beginning of the twentieth century.

In 1912 Bernstein proved (see, e.g., [4, p. 200]) that if £ is a continuous
27-periodic function and dist(f, T,) = O(1/n**?), 0 < p <1 (T, denotes the
set of trigonomeétric polynomials of degree not exceeding ») then f is of
class C* and the kth derivative of f satisfies either Lipschitz condition with
an exponent p, provided 0 < p <1, or | f®(x)— f®(y)| = O(|6 log J]), for
|x— y| =96, provided p = 1. This theorem together with Jackson’s theorem
(see, e.g., [4, p- 139]) was the starting point of the constructive function
theory. It is not possible to give in a short paper any review of extensions
of these theorems. We shall prove a Bernstein-type theorem for a wide
class of compact subsets of #" (or ¥”) preserving Markov’s inequality
(cf. Section 3).

In [1, p. 450] Bernstein observed that if zeros of the polynomials of best
approximation to a positive function fe C[ —1, 1] are outside an open
neighbourhood U of [—1, 1] then f can be extended to a holomorphic
function in U. Ple$niak [13] generalized Bernstein’s theorem to the case of
approximation in the space L,(FE, u), where (E, u) satisfies Leja’s poly- .
nomial condition (L*), see Section 5.

The case of uniform approximation was studied by Walsh [25], Borwein
[3], Blatt and Saff [2], and by the author [26]. These results may be
summarized in the following way.

Let E be a compact subset of ¥ such that each point of its external
boundary is regular with respect to the Dirichlet problem. If a complex
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function fis continuous on E and the sequence P {z)=a,,z" + - - + a,, of
polynomials of best uniform approximation tends to f on E then, for some
R >1 the following statements are equivalent:

(1°) f can be extended to a function that is holomorphic in
Egp:={ze¥:Ly(z)<R},

(2°) limsup, .. |a@n,!|""<1/d-R, where d=d(E) is the transfinite
diameter of E,

(3°) for every R, e(l, R) there exists 4 €% such that P,(z}# 4 on
the closure of Eg,.

Also, in [26, Theorem 97, it was pointed out that if P, has no zeros in
Er,, where the sequence {R, "} is rapidly decreasing to zero, and L has
the Holder continuity property (see (2.3)) then f is extendible to a C*
function in %°. If zeros of polynomials of best approximation approach the
set faster then we obtain a lower class of differentiability of a function that
is approximated. Precisely, Borwein [3] showed that if fe C[—1,1] and
polynomials P, are different from zero in &,, respectively, where £, is the
open ellipse with foci at —1 and 1, and axes (R,+R;')/2, with
R,=n%*1+0n 52(0,1], k being a positive integer, for all #n, then f is
k-iimes continuously differentiable in the interval (—1+¢, 1 —¢), for any
small positive ¢. In [27], it was given a first attempt at extending Borwein’s
result to the case of plane sets. This paper contains a refinement of those
results, also in other-—than uniform—norms.

Pleéniak [117] developed the theory of quasianalytic functions of several
variables in the sense of Bernstein. In Section 5, we give (using, in fact, an
old Bernstein’s condition, cf. (5.6)) an extension of a Pleéniak result on C*
guasianalytic functions.

2. PRELIMINARIES
Let E be a compact subset of #V, where # is a field of either real: #
or complex: ¥ scalars, and u be a positive finite Borel measure on E. By

L,(E, 1) we denote the vector space of all u-measurable complex functions
defined on £ such that

171, :=L \f17du<co, for O<p<1

(in this case ||-||, is an F-norm and (L,(E, p), | -1,) is a Frechet space, see,
eg, [17]), or

1/p
HfllpI:(J |f|”du> <oo, for 1<p<oo,

640/67/3-2
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and

(2P :=eSS;up |f] < oo.

If a function f'is continuous on E (briefly fe C(E)) then | f} ., is equal to
the usual uniform norm and it will be denoted by | /|| z.

Let 2,4 ") be the set of all polynomials of N variables of degree at
most n. Given function f€ L,(E, u), p>0, and n 20 we put as usual

dist,(f, Z(™)) ==inf{|f — O, : Qe Z(A™)}.
Then
PR (f):={PeP(A™):|If - P|,=dist,(f, Z(A"))}

is the set of elements of best L,-approximation to fin Z,(A M. For each
n, N, and p the sets PS%(f) are nonempty. If 1 <p < oo, then the space
L,(E, p) is strictly convex and, consequently, P{%7(f) contains exactly one
element. In the case N=1 and p= o each fe C(E) possesses exactly one
element of best approximation (see, e.g., [4, p. 80]) but for # =2 there is
a noncontinuous fe€ L (E, u) with P{T’(f) containing more than one
point (see, ¢.g., [22, p. 222]). If Ec & and p is nonatomic then for each
n one can find a function fe L,(E, u) that has infinitely many elements of
best approximation in #,(#) (we refer the reader to [7] and to Section Il
2.5 of [22]).
A main tool in our investigations is Siciak’s extremal function of E

@ :(z) :=sup (sup{|P(z)|"": P Z(%"), | Plp<1}) (21)

nz1

for ze ¢" (here Ec #" is treated as a subset of €~ and #" as a generic
subspace of %%, that is, €-Z"=%"). In case N=1, &, coincides
(cf. [18]) with Leja’s extremal function associated with E (see, e.g.,
[8, p. 263]) defined by the formula

N

For ze ¥, where w® = {wq,, ..., Wi } is an arbitrary system of k + 1 different
points of E.

From (2.1) we immediately derive the well-known Bernstein—Walsh
inequality

K| z—wy

Lg(z):= lim {inf{ max | []|———
k—oo \wh) {0=/=k I—0

2]

Wi —Wg

|P(z)| £ [Pr(2)]1" | Pl g, for Pe#(€M), zeg". (2.2)
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We say that @, has the Holder continuity property (briefly (HCP)) if there
exist constants k>0 and r = 1 satisfying

G (z2)<1+xdY,  dist(z, E)<5<1. (2.3)

3. BERNSTEIN-TYPE CHARACTERIZATION OF C* FUNCTIONS
First we recall a known resuit.
LemMa 3.1 (see, e.g, [23, Lemme 1V 3.3]). There are positive constanis

C, (depending only on ae ") such that for any compact subset E of R"
and any £> 0 there exists a function u,e C (") satisfying

u,=1 in a neighborhood of E,
u(x)=0, if dist(x, E)ze,
0<su,<1,

and for every o€ Z"] it holds
|Du(x)| £C,e™™,  xeR", (3.1)
where D*=0"/0x™ ... 0x*¥, and |a| =a; + --- +ay.

A compact subset E of 4" is said to have the property (P) if there exist
constants y>0 and r>0 such that for every n=1,2,.. and every
Pe? (4 if dist(x, EY< 1/n” then the following inequality is satisfied

[P(x)| =7 [P]g- (P)
It should be mentioned here that we take into account points x of ¥~

Remark 32. If &, has (HCP) then the Bernstein-Walsh inequaiity
yields

IP(X)I§<1+S> [Pllg, if dist(x, E)<1/m".

Hence, in that case, we have (P). It is not known whether there is a set
having (P) whose extremal function has not (HCP). It is even not known
whether (P) implies continuity of @, on ¢".

From (P), applying Cauchy integral formula one can immediately derive
the following version of Markov’s inequality (see [15]): for every multi-
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index ae &7 there exists a constant M = M(E, o)>0 such that for any
polynomial Pe Z(A ™), n=1, 2, ..., it holds

ID*Pllg < Mn" || P|| 5. (32)
Observe that r in (3.2) is the same as in (P).

If PeZ(€") then Q(x, y)=0(X(, . Xn» V15 V) i=P(x+iy)=
P(x,+iyy, .., xy+iyy) is a polynomial of 2N real variables and

glat +

D(a‘,az)Q(x, y)= ;1o r P(x + iy),

Dzt Bzt
(where z,=x;+1iy)), for a',a?e Z, x, ye #". Therefore, from (3.2) we
get

1D Q]| p < Mn"'+ | P . (33)
Now, we can formulate the main result of this section.

THEOREM 3.3. Suppose E has the property (P). Let f € C(E) and assume
that

disto(f, Z,(A ) < M/n™ 7, (3.4)

where M = M(E, f}>0, r is given by (P), k is a nonnegative integer and
pe(0,7]. Then there exists a function f*eCHRY), if A =R (or
e CHRA™), if A =%), such that f*=f on E and for each ae &%
(or e ZY), |a| =k, either Df* satisfies Lipschitz condition on E with
an exponent pfr (briefly D% *elLip,,(E)), provided O0<p<r, or
|D%f*(x)—Df*(y)| =M, |61ogd|, for x, y€ E, |x— y| <0, provided p=r
(for brevity we shall write—in honor of Bernstein—D*f* ¢ B(E)).

The proof (cf. [10, Theorem 5.17 and [4, p. 200]) is presented for the
case A =A. Set Qy=Py, Q,=Pon— Pyu-1, where P, e P{%’(f). For each
n, let u, =u, be a C*™ function obtained from Lemma 3.1 for ¢, =1/2". We
claim that

[oo)

f*i= ) .0, (3.5)
n=90
is an extension of class C* of the function f to #".
Since u,| =1, we get f* = fon E. Take o€ Z% such that |«| < k. Then
we obtain

sup |D%u,Q,| =sup |[D*u,Q,|
RN

Eyp

<y (;) sup [D*~ i, | 1D°Q,

<o
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where E, ;= {xe #" : dist(x, E)<¢,}. By applying, in turn, (3.1), (P), and
(3.2) we get

sup |Du,0,| < ¥ (“) C. 2P sup DO, |
2N ﬂ E,

Bso

<y ¥ (Z) C,_, 2" | DPQ, |,

B=a

SM2""Q, || 5 (3.6

where M,=M,(E, o, f)>0 is an appropriate constant. By the hypothesis
1Qull e S f = Pollg+ If = Pyt | g S M3/270% 42, (3.7)
and, consequently, by (3.6)

sup |D%u,Q,| < M,/2m e+, (3.8)
@

This means that the function f* is of class C* in #".
Take ae &Y, |a| =k, and x, yeE, |x— y|=6, 6§>0. Choose m=1
satisfying

1
2"”1§W<2’”. (39)

Then, by (3.8) we get

DS~ DFHONE T IDQ,(0)~DQ, (| +5.  (310)

The mean-value theorem, (P), (3.2), and (3.7) yield
ID*Q,,(x) = D*Q,(»)| < |grad D*Q, | ¢ Ix— |
<M 5202,
Hence

. m—1
|D*f*(x) =D *(p)| S M8 3, 27077+ M7
=0

n=

Therefore, by applying (3.9)

|D*f*(x)— D*f*(y)| < M,6°", provided O<p<r,
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or

|D%f*(x) = Df*(y)| S 0(Mem + Ms) < My & log 1/6

(for sufficiently small ¢), provided p=r.
The case # =% can be proved along similar lines by using (3.3) instead
of (3.2).

4. DISTRIBUTION OF ZEROS OF THE POLYNOMIALS OF BEST
APPROXIMATION TO A FUNCTION OF CLass C*: UNIFORM NORM CASE

Let E be a compact subset of the complex plane with continuous Leja’s
extremal function L. If E_, denotes the unbounded connected component
of €\F then

1, PELAY

LE(Z)z{exp G(z), zeE,

where G is the Green function of E,, with a pole at infinity ([8, p. 280],
see also [18]).

In this section the subscript E in the symbol of the norm is omitted (i.e.,
I-1l= 11l ). Let W(E) denote the closure of the space #(%)|x in the norm
[ -1, where (€)=1), >, Z(€). According to Mergelyan’s theorem W(E)
coincides with the set of functions continuous on E that have analytic
extension to the interior of ¥\E_,. We are interested only in functions from
W(E) therefore it will be assumed that ¥\E=E .

Let ¢, be the usual nth Chebyshev polynomial of E, that is,

|1, | =min{||P|| : P€ #,(¥), P is monic}. (4.1)

Since L, is continuous, the transfinite diameter d= d(F) of E, being equal
(see, e.g., [8, p. 267]) to the Chebyshev constant ¢(E) :=1lim,,_, ., ||t, ], is
positive. We assume that the following inequality is fulfilled:

ﬂ—;ﬂ < cn?, (4.2)

where C>0 and A= 0 are constants depending only on E. (This inequality
will be discussed more precisely later in this section.)

Lemma 4.1. Let a polynomial P(z)=a,z"+ --- +a, have no zeros in
Ep:={Lg(z)<R}, R>1. Then

la,| = (| Pl/d"R" (4.3)
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Proof. Let the sequence {z,,}5 be Leja’s extremal sequence associated
with E (its existence has been shown in {97) satisfying

1L () £1L.(z,), zeE mz1
and

d= Hm |],(z,)|"",

m— o0

where [,(z) = (z—zy) - (z—z,,_;), m=1. It was mentioned by Plesniak
[13, Lemma 147 that if all zeros of the polynomial P(z)=
alz—cy)---(z—c¢,), a,#0, are contained in E_ then

la,| d"L(c;)--- Le(e,)= Hm |P(zo) - Plz,, )™

This yields the required inequality.

Under the above assumptions and notations we can present the following
refinement of [27].

THEOREM 4.2. Let E have the property (P) and let fe C(E). Put
R,=nlk+Aro+Din where k is a positive integer, r is defined by (P), 4
satisfies (4.2), and p € (0, r]. Suppose there exists a constant A €€ such that
for almost all n

P,(z)—A#0, (4.4)

where P,e P T°(f) and ze Eg,. Then there exists a function f*e C*(#*)
such that f¥*=f on E and for each aeZ? , |a|=k, D*f*eLip,,(E),
provided 0 < p <¥, or D*f* e B(E), provided p=r.

Proof. It is enough to prove (34) for n=2" m=1i Put
P(z)=a,,z"+ --- +ay, (a,, can be equal to zero). By (4.4), from (4.3) we
derive

”f”PnH é ”f‘(Pn-kl-'an+1,n+ltn+l)”
[P, il + 14l
dn+1Rn+1

n+1

S =P+ 12+ 1l (4.5)

Since P,,; is a polynomial of best approximation to f we have
NP,s I =21 f1. Hence, (4.5) and (4.2) yield

n4 1)
\|f—Pn|l§Hf*'Pn+1|!+M1£§;Tr,

n+1
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for almost all n, with M,=M(E, f). Now, since [[f—P,|| —0, sub-
stituting the value of R, we get

1 1
”f’"PnnéMl <nrk+p+1+(n+1)rk+p+l+ )

and, by putting n=2"
If = Pom || £ M2+, (4.6)

It seems to be interesting to minimize the exponent in the estimation of
R,. First, assume that L= @, has (HCP) and take into consideration the
number r from (2.3). By Remark 3.2, in this case it is the same number r
as in (P). If each connected component of E has its diameter not smaller
than a fixed positive number then r<2 (see [19, Lemma 1]). In some
special cases we can take r=1. For example, let E satisfy the following
condition:

(B) there exists a constant > 0 such that for each z € E there exists
Ze E such that the closed ball B(Z, b) = E and z e B(Z, b).

.For every we € there exists ze E satisfying |w— z| = dist(w, E). In view of
(B) we get

Lg(w) = Ly, (w)=max(1, |w—Z|/b).

Therefore we have (2.3) with r=1.
This observation and Cauchy integral formula lead to the classical
Bernstein inequality (see, e.g., [4, p. 91]):

HP,”E(0,1)§” ”P”§(0,1)s PeZ,(%).

If E=[—1,1] then Lg(z)=|z+/z*>— 1|, the branch of the square root
is chosen to satisfy |z +./z>— 1| 21 on €. Thus, for a point we (—1, 1) we
obtain Lg(z)£1+«,0, for |z—w| Ld=48(w)<min(]1—w|, |1+ w|). This
leads, via (3.2), to another Bernstein’s inequality (see, e.g., [4, p. 91]):

|P'(z)| =C, ||P“[—1,1]> PeZ (%), |z| £1—¢,

where the constant C depends on small ¢>0. On the other hand, since
Li_111(1+2e)=1+e+./e(2+¢)l, it is visible that r=2 is the smallest
possible in (2.3) for L;_, ;5.

Now, devote some remarks to the inequality (4.2). If L has (HCP) then,
repeating the argument of the proof of [19, Theorem 17] we get

Iz, r1
7§Mn .
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In particular, if £ is connected and contains more than one point then
Ae[0, 1/2), cf. [6]. If additionally ¥\E, is convex then A=0, see [16].

It is worthwhile to study whether the estimation of R, of Theorem 3.2
is sharp.

ExaMpPLE 4.3 (the idea is taken from the proof of Bernstein’s lethargy
theorem, e.g., [4, p. 127]). Take E=B(0, 1) and put R, =n%**#"" (in this
case we have r=1 and A=0), where pe(0,1]. For a,=1/3"**#) define
b,:=a,_,—a,>0 and the function f(z) ;=Y. , b,z"". We claim that the
polynomial P (z)=37_, b,z° is a polynomial of best uniform approxima-
tion to f in the space Z(%), 3*<I<3**' Indeed, for the points
zy=e™¥ 0< <23 we have (f—P,)(z,)=(—1) a, and, conse-
quently

o«

a=|(f—PIz)SIf-Pl< ¥ |b]=a, (4.7)

n=s+1

Hence, by [21, Theorem II 2.17 we get our claim. Since

1Pl g < (3577 —1) 3 3w

n=1

§s—2 —2n/3s
§(3k+f'—1)[2+2 (3s(k+f’))] , for s=3,

n=1

the sequence {[|P, || Ezs .} is bounded. Thus, applying Theorem 4.2 we obtain
that f can be extended to a function of class C*~! in %2 On the other
hand, since we have (4.7), proceeding along the same lines as in the proof
of Theorem 3.3 we can construct an extension of f of class C*. Therefore
the estimation of R, is not exact, but to obtain (4.6) we need this “super-
fluous unity.”

5. THE BERNSTEIN-MARKOV INEQUALITY

Let u be a positive finite Borel measure defined on a compact subset £
of A M. The pair (E, p) is said to satisfy Leja’s type polynomial condition
(L*) if for every family # < 2(#"") such that

m{zeE: sup [P(z)] = c0})=0
PesF
and for every 61 there exists an open neighbourhood U of E and a
positive constant M such that
sup | P(z)] € Mb4°e?, Pe#F.

ze U

We recall two versions of the Bernstein—~Markov inequality.
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LemMMA 5.1 ([20] in the complex case and [12] in the real one). Let
(E, p) satisfy (L*). If A" =€ we suppose additionally that

WENB(z,0)>0, foreach t>0andzes, (5.1)

where S is a subset E such that ||P| z=|P|g, for every Pe P(€"). (For
A =R this assumption is not necessary, see [12].) Then for every a>1
there exists a constant C,> 0 such that for every Pe Z(A ™), n2 1, we have

[Pl C,a™ ||Pll,, provided p=1, or (5.2)

IP| < C,a" |P|}?,  provided O<p<l. (5.3)

LemMa 5.2 ([5, Theorem 2] and Siciak, personal communication). Let
(E, n) satisfy the following “density condition”

(D) there exist positive constants C and m such that for each z € S and
te (0, 1] it holds

WEnN B(z, 1)) = Ct™

If, moreover, @, has (HCP) then there exists a constant C,>0 and an
exponent | such that for each Pe P(A"") we have

|Pl-<Cont |Pl,,  provided p21,or (54)
|P| < C,n' | P|YP, provided O0<p<1. (5.5)
14 P

By the kind permission of Professor J. Siciak, this proof is presented for
a convenience of the reader. Let Pe@,(A"). Take zeS such that
|P(z)] =|P|lg- For we B(z, t)n E, t(0, 1], by applying in turn the mean-
value theorem, the Bernstein—-Walsh inequality (2.2) with (HCP), and
Markov’s inequality (3.2) we obtain

|P(z) — P(w)| < Mn"t(1 +1t'")" | P| .
Put t=1/(kn)". Then

Me
[P 2

1Ple—IPw)l ===

We can take x big enough to satisfy Me < «x". Therefore
IPIE= M, [P(w)l?,  O0<p<co.

According to the condition (D), by integrating the above inequality on
B(z, 1/(xn)") n E we get the result.
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Remark 5.3. Goetgheluck [5, Theorem 27] has proved that if £ is a
uniformly polynomially cuspidal (briefly (UPC)) subset of £V (for the
definition and properties see [10]) and if y is the Lebesgue measure then
inequalities (5.4) and (5.5) hold. An inspection of Goetgheluck’s proof per-
mitted Siciak to restate the lemma in the more general setting. Actually,
one can show that if £ is (UPC) and u is the Lebesgue measure then the
pair (FE, u) satisfies (D). Moreover, in [217] Siciak has given an example of
a Cantor type set £ whose extremal function has (HCP) (evidently £ is not
(UPC}) and the pair (E, p), where p is the one-dimensional Lebesgue
measure, fulfills (D).

As an immediate consequence of Lemma 5.2 and Theorem 3.3 we obtain
the following

COROLLARY 54. Let (E, p) satisfy (D) and let &5 have (HCP). If
f e C(E) and one of the following conditions is fulfilled

dist,(f, Z(A V)= O(1/n 1), Jor pz1, or
dist,(f, (A ™) = O(1/n?*+1+0),  for 0<p<],

then there exists a function f*e C*(RY) (or f*e CHR™) in the case
H =€) such that f*=f, u=ae. on E and for any ae Z% (or ae Z*"),
lae| =k, either D°f* e Lip,,,(E), provided 0 < p <r, or D*f* € B(E), provided
p=r.

We conclude this section with an improvement of Bernstein’s result
on quasianalytic functions. A function fe L, (E, u), 0<p=<oo, is called
p-quasianalytic in the sense of Bernstein if there exists an increasing
sequence of integers {n;} such that

lim sup dist,(f, 2, (A4 V)" <1,
j—=
In this case we shall write fe B,(E, {n,}). A wide description of properties
of co-quasianalytic functions can be found in [11]. The reader is also
referred to [12, 14] (the Orlicz space case).

ProposiTion 5.5 (cf. [11, Theorem 9.3; 10, Remark 7.37). Ler (E, )
have the property (D) and let @5 have (HCP) (for the case p= 0 it is
enough to assume that E has the property (P)). Let fe B(E, {n;}) and

lim sup (Inn;, ;)/n;=0. (5.6}
Jj—
Then there exists a function f*e C®(R™) (f*e C™(R*™) if X =€) such
that f* = f, p-a.e. on E.
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Proof for pe[l, ©) and A =R (the other cases are analogous). By
(5.6), for any a>1 one can find j, such that

j+1S j>ja' (57)

Since f € B,(E, {n;}) we have also

If =P ll, < Myn™, (5.8)

where 0<n<1 M,>0, and P5?’ is a fixed polynomial from PSPi(f),
j=1,2, ... The extremal functlon "of E has (HCP), hence

dist(E, €V \E, , ;) = M,5", 0<d=1, My=M,(E)>0. (59)
Thus, for 6 =1/n;, , the set
{ze®" : dist(z, E)<g;:= M,/n} ,}

is contained in E,,,, . To every g there corresponds a function
u;€ C* (") satisfying the conditions of Lemma 3.1. Put

f*= Z ”ija

Jj=0

for Qo :=P5?” and Q;:=P{"> — P<"> By repeating the proof of inequality

nj+l

(3.6) we get, for a fixed e 27,

sup |D*u;Q;| < Manpl 191 g, (5.10)

where M, = M5(E, «). From (5.4) and (5.8) we derive
19l e < Munj, , 11Q;1, < Msnj,  n™.
This, together with (5.7) and (5.10), yields
sup | D%, Q| < Mo(a™"+ ).
The quantity in parentheses can be chosen to be less than 1, therefore the

series D*f* is uniformly convergent on #”. Since the reasoning is valid for
any multi-index o, the function f* is C* on #”.



REMARKS ON BERNSTEIN’S THEOREMS 265

6. DISTRIBUTION OF ZEROS OF THE POLYNOMIALS OF BEST
APPROXIMATION TO A DIFFERENTIABLE FUNCTION (THE L ,-NORM CASE}

Let again E be a compact subset of the plane € and p a positive Borel
measure on E.

The purpose of this section is to present in unified form results
concerning the relationship between the distribution of zeros of the poly-
nomials of best approximation to differentiable and holomorphic functions
in the case of L, -approximation, for all positive p. First we shall deal with
functions of class C*.

By W,(E, u) we denote the closure of the space #(%)|, in the norm
[-I,- Take p>0 and a function fe W, (E, u). For each n20 the set
PS7(f) is nonempty and we can choose a sequence PS?’ e PS7’(f) such
that

If—P7, -0, when # tends to infinity. (6.1)

We also choose a sequence of p-Chebyshev polynomials of E that is the
sequence {1577} satisfying

25721, = inf{}| P, : P€ Z(€), P is monic}. (6.2)

THEOREM 6.1. Let (E, u) satisfy (D) and let @p have (HCP). Let
feW,(E, u), p>0. Put

R, =plrk+i+2irpriyn provided 1Zp< 0, or

R, =nUk+Aix2itp+ipin . provided O<p<1,

where k is a positive integer, r is defined by (2.3), A by (42), [ by (54} or
(5.5), and pe (0, r]. Suppose there exists a constant Ae¥ such that for
almost all n

PiP2(z)# A, if zeEg,.
Then one can find a function f* € CX(R?) such that f* = f, y-ae. on E, and

for any aeZ’, |a|=k, either D*f*e Lip,,(E), provided O0<p<r, or
D** e B(E), provided p=r.

Proof for pz 1. From Lemma 4.1 we derive

1P e+ 14]
dn+1Rn+1

n+1

Lf =P, S0 — PSR, + A (6.3)

On the other hand, the definition of a p-Chebyshev polynomial yields

lesil, < w(EYP it ol e (6.4)
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and, since |[P2%][,<2 | f|,, via (5.4) we obtain
1P e =M (n+ 1),  M=M,(E, p, f)>0.

Applying both above inequalities and (4.2), from (6.3) we get the
estimation

(n+1)*+!
1= 2P, < 1= P+ My (65)
n+1

where M, is a suitable constant independent of n. From this, proceeding
along the same lines as in the proof of Theorem 4.2 we derive

||f_P2<mp> ”p:<:M3/2m(rk+p+l)’
and, consequently, by (5.4),
[ P5F? — P3| p < My/2" 4P (6.6)

In view of Lemma 3.1, for ¢,,= M /2™ (where M is defined in the same
way as M, of (5.9)) we find corresponding functions u, =u, . Thus, by
(6.6), repeating the argument of the proof of Theorem 3.3 we show that the
function

2= u, (P> — PSE) (6.7)

m=1

is the extension of f we seek. The case 0 <p < 1 can be proved in a similar
way.

COROLLARY 6.2 (an L,-analogue to [26, Theorem 91). Let (E, u)
satisfy (D) and let @z have (HCP). Let f € W ,(E, p) for some p > 0. If there
exists A€% such that P?’(z)# A on Ep, R,>1, where the sequence
{R,;"} is rapidly decreasing to zero, then there exists a function
[*e C®(R?) such that f* = f, u-a.e. on E.

Proof. Fix kz1 and define a:=rk+1+21+p+1, for p=1, or
a:=rk+Ai+2[+p+1/p, for 0<p< 1. By the hypothesis n*/R? — 0, hence,
for almost every n we have n" < R,,. Then, Theorem 6.1 implies that f*
defined by (6.7) is of class C*. Since k is arbitrarily taken, we get the
assertion.

It has been mentioned in the first section that Plesniak [13] extended
Bernstein’s theorem (case of holomorphic functions) to the case of
L,-approximation. We shall now give an extension of this result (and an
analogue to [26, Theorem 3]) to the case of any L, -norm.
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Qbserve first that a standard reasoning (e.g., [24, p. 78]) and Lemma
5.1 lead to the following version of the Bernstein-Walsh theorem (see also

[14, Theorem 5.27).

Lemma 6.3. Ler (E,u) satisfy (L*) and let the condition (5.1} be
Julfilled. If for f'e L (E, u) it holds

. 1
lim sup dist,( f, %(%))”’“——-E, R>1,

n— oo

then there exists a function f* holomorphic in Eg such that [* = f, uy-ae.
on E.

From this we derive the last result.

THEOREM 6.4. Let (E, u) satisfy (L*) and let the condition (5.1} be
fulfilled. Let fe W,(E, u) and R>1. Set PP’ (z)=a,,z"+ - +a,, (a,,
can be equal to zero). The following statements are equivalent.

(1°Y  There exists a function f* holomorphic in Eg such that f*=f,
u-a.e. on E.

(2°) For every R, (1, R) there exists A€% such that PSP (z)+# A,
ze Eg,, for almost all n.

(3°) limsup,_ . la,|"” <1/dR.

Proof forpz1. (1°)=(2°). Without loss of generality we assume that
f is holomorphic in Ex. Take R, e (1, R). The Bernstein—Walsh theorem
(see, e.g., [24]) yields

lim sup ||/ — PS> | 4" S 1/R.

n— 00

Therefore, since ||/~ P72, <M, | f—P{®?| g (for all n= 1) we have got
|Py=” — PP, < My/R3,
for every Rye(Ry, R) and n=ng,. Now, we apply the Bernstein-Walsh
inequality (2.2) and (5.2) to obtain
|P5%? ~ PSP\l g S RTIPS®7 = PP &
aR”

< M;@R} PS> — PSP, S My,
2

where a> 1 is chosen to satisfy aR, < R,. Thus, the sequence {||PS?’| B )
is bounded and we can put 4=1+sup{| P’ Er, }.
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(2°)=(3°). For R,e(1, R) and a> 1, from Lemma 4.1 and Lemma 5.1

we get
an
= 0 R
a1 =0 (5]

for almost all n. Since a can be chosen arbitrarily close to one and R, close
to R, we have (2°).
(3°)=(1°). To each R, e (1, R) we find an integer n, such that

la,,| £1/d"RY,  n>n,.
Then, applying also (6.4) we obtain
ILf =P, S 1= PP, + @l 125771,

(AP
d"R}

S =P+ M, n>n,. (6.8)

Choose &> 0 satisfying R, :=dR,/d+¢> 1. Since ||z, )" — d, there exists
n, > n, such that

It lle=(d+e)’,  n>n,. (6.9)
In view of fe W,(E, n), from (6.8) and (6.9) we get
If = PPN, S MoyRY,  n>n,.

Hence, according to Lemma 6.3 we find a function f, , holomorphic in Ex,
satisfying f, g, | z=f. Since R, — R,, for ¢ » 0 and R, was arbitrarily taken
from (1, R) the function can be holomorphically extended to the whole
level set Ex.
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