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On compact sets preserving Markov's inequality, Bernstein-type conditions for a
continuous function to be of class Ck are discussed. Also, relationships between the
distribution of zeros of polynomials of best uniform or L p approximation to a given
function and its differential properties are established. © 1991 Academic Press, Inc.

1. INTRODUCTION

We present in this note some extensions of results given by Bernstein in
the very beginning of the twentieth century.

In 1912 Bernstein proved (see, e.g., [4, p. 200]) that ifJis a continuous
2n-periodic function and dist(j, Tn) = O(1/nk+ P), 0 < P~ 1 (Tn denotes the
set of trigonometric polynomials of degree not exceeding n) then J is of
class Ck and the kth derivative ofJ satisfies either Lipschitz condition with
an exponent p, provided O<p< 1, or IJ(kJ(x)- J(kJ(y)1 =0(1<5 log <51), for
Ix - yl ~ <5, provided p = 1. This theorem together with Jackson's theorem
(see, e.g., [4, p. 139]) was the starting point of the constructive function
theory. It is not possible to give in a short paper any review of extensions
of these theorems. We shall prove a Bernstein-type theorem for a wide
class of compact subsets of ~N (or ~N) preserving Markov's inequality
(cf. Section 3).

In [1, p. 450] Bernstein observed that if zeros of the polynomials of best
approximation to a positive function J E C[ -1, 1] are outside an open
neighbourhood U of [ -1, 1] then J can be extended to a holomorphic
function in U. Plesniak [13] generalized Bernstein's theorem to the case of
approximation in the space L 2(E, /1), where (E, /1) satisfies Leja's poly­
nomial condition (L*), see Section 5.

The case of uniform approximation was studied by Walsh [25], Borwein
[3], Blatt and Saff [2], and by the author [26]. These results may be
summarized in the following way.

Let E be a compact subset of C(f such that each point of its external
boundary is regular with respect to the Dirichlet problem. If a complex
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function f is continuous on E and the sequence Pn(z) = annzn+ ... + aOn of
polynomials of best uniform approximation tends to f on E then, for some
R> 1 the following statements are equivalent:

(1 0
) f can be extended to a function that is holomorphic in

E R := {ZE~: LE(z)<R},

(2°) limsuPn~oo lannll/n~1/d·R, where d=d(E) is the transfinite
diameter of E,

(3°) for every R 1 E (1, R) there exists A E ~ such that Pn(z) # A on
the closure of E RI •

Also, in [26, Theorem 9], it was pointed out that if Pn has no zeros in
ERn' where the sequence {R;n} is rapidly decreasing to zero, and L E has
the Holder continuity property (see (2.3)) then f is extendible to a COO
function in ~2. If zeros of polynomials of best approximation approach the
set faster then we obtain a lower class of differentiability of a function that
is approximated. Precisely, Borwein [3] showed that if f E C[ -1, 1] and
polynomials Pn are different from zero in an, respectively, where an is the
open ellipse with foci at -1 and 1, and axes (Rn ±R; 1)/2, with
Rn=n(k+l+p)/n, pE(O, 1], k being a positive integer, for all n, thenfis
k-times continuously differentiable in the interval (- 1+ 8, 1- 8), for any
small positive 8. In [27], it was given a first attempt at extending Borwein's
result to the case of plane sets. This paper contains a refinement of those
results, also in other-than uniform-norms.

PleSniak [11] developed the theory of quasianalytic functions of several
variables in the sense of Bernstein. In Section 5, we give (using, in fact, an
old Bernstein's condition, cf. (5.6)) an extension of a Plesniak result on C ex:

quasianalytic functions.

2. PRELIMINARIES

Let E be a compact subset of ffN, where ff is a field of either real: ~
or complex: ~ scalars, and Jl be a positive finite Borel measure on E. By
Lp(E, Jl) we denote the vector space of all Jl-measurable complex functions
defined on E such that

Ilfll p := f IfIp dl1 < 00,
E

for O<p < 1

for 1~p < 00,

(in this case II· lip is an F-norm and (Lp(E, 11), II· lip) is a Frechet space, see,
e.g., [17]), or

( )

l/P

Ilfllp:= LIfl P dl1 < 00,

640/67/3-2
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11/1100 := ess sup III < 00.
E

If a function I is continuous on E (briefly IE C(E)) then 11/1100 is equal to
the usual uniform norm and it will be denoted by lilliE'

Let g:,(SN) be the set of all polynomials of N variables of degree at
most n. Given function IE Lp(E, J.l), p > 0, and n ~ 0 we put as usual

Then

is the set of elements of best Lp-approximation to lin g:,(SN). For each
n, N, and p the sets P~P)(f) are nonempty. If 1<p< 00, then the space
Lp(E, J.l) is strictly conv~x and, consequently, P~,P)(f) contains exactly one
element. In the case N = 1 and p = 00 each IE C(E) possesses exactly one
element of best approximation (see, e.g., [4, p. 80]) but for n~ 2 there is
a noncontinuous IE Loo(E, J.l) with p~a;>(/) containing more than one
point (see, e.g., [22, p. 222]). If EcBi'and J.l is nonatomic then for each
n one can find a function/ELJ(E, J.l) that has infinitely many elements of
best approximation in .c!i'n(~) (we refer the reader to [7] and to Section II
2.5 of [22]).

A main tool in our investigations is Siciak's extremal function of E

cPE(Z) := sup (sup{ IP(z )IJ/n :P E g:,('CN), IIPII E~ I} ) (2.1)
n;;:;J

for Z E 'CN (here E c BiN is treated as a subset of 'CN and ~N as a generic
subspace of 'C N, that is, 'C. BiN = 'CN). In case N = 1, cPE coincides
(cr. [18]) with Leja's extremal function associated with E (see, e.g.,
[8, p. 263]) defined by the formula

( { [
k I z-w IJ})J/kLE(z):= lim inf max n lk •

k~oo w(k) O;;;i,j;;;i,k I~O Wjk-W1k
l"i'j

For z E '15', where W(k) = {WOk> ... , Wkk} is an arbitrary system of k + 1 different
points of E.

From (2.1) we immediately derive the well-known Bernstein-Walsh
inequality

(2.2)
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We say that ct> E has the Holder continuity property (briefly (HCP)) if there
exist constants K > 0 and r~ 1 satisfying

dist(z, E) ~ [) ~ 1. (2.3 )

3. BERNSTEIN-TYPE CHARACTERIZATION OF Ck FUNCTIONS

First we recall a known result.

LEMMA 3.1 (see, e.g., [23, Lemme IV 3.3]). There are positive constants
C~ (depending only on IX E 2"~) such that for any compact subset E of f1ltN
and any e > 0 there exists a function Ue E COO (f1ltN) satisfying

in a neighborhood of E,

if dist(x, E) ~ e,

and for every IX E 2"~ it holds

ID"ue(x)1 ~ C"CI"I, (3.1)

A compact subset E of %N is said to have the property (P) if there exist
constants y > 0 and r> 0 such that for every n = 1, 2, .,. and every
P E &,,(% N) if dist(x, E) ~ I/n r then the following inequality is satisfied

IP(x)1 ~y IIPIIE' (P)

It should be mentioned here that we take into account points x of «jN.

Remark 3.2. If ct> E has (HCP) then the Bernstein-Walsh inequahty
yields

IP(x)1 ~ (1 +~) n IIPII E' if dist(x, E) ~ I/n r
.

Hence, in that case, we have (P). It is not known whether there is a set
having (P) whose extremal function has not (HCP). It is even not known
whether (P) implies continuity of ct>E on «jN.

From (P), applying Cauchy integral formula one can immediately derive
the following version of Markov's inequality (see [15]): for every multi-
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index 0: E ~~ there exists a constant M = M(E, 0:) >°such that for any
polynomial P E &:,( f N), n = 1, 2, ..., it holds

(3.2)

Observe that r in (3.2) is the same as in (P).
If PE&:,('?r) then Q(x,y)=Q(xl> ...,XN'Yl""'YN):=P(x+iy)=

P(x 1 + iy I> ... , XN+ iyN) is a polynomial of 2N real variables and

ola1 +a21
D(a1,a2)Q(x, y) = i la

2
1 1 2 1 2 P(x + iy),
OZ~l + a 1 ••• OZ';f+ aN

(where Zj = xj + iyJ, for 0:1, 0:2 E ~~, x, Y E f1lIN. Therefore, from (3.2) we
get

(3.3 )

Now, we can formulate the main result of this section.

THEOREM 3.3. Suppose E has the property (P). Let f E C(E) and assume
that

(3.4 )

where M = M(E, f) > 0, r is given by (P), k is a nonnegative integer and
p E (0, r]. Then there exists a function f* E Ck (f1lIN), if f = f1lI (or
f* E Ck (f1lI2N), if f = 't&'), such that f* = f on E and for each 0: E ~~

(or O:E~~), 10:1 =k, either Daf* satisfies Lipschitz condition on E with
an exponent plr (briefly Daf* E Lipp/AE)), provided °< p < r, or
IDj'*(x) - Dj'*(y)1 ~ M 1 115 log bl,for x, y E E, Ilx - yll ~ 15, provided p = r
(for brevity we shall write-in honor of Bernstein-Daf* E B(E)).

The proof (cf. [10, Theorem 5.1] and [4, p. 200]) is presented for the
case f=f1lI. Set Qo=P1 , Qn=P2n-P2n-l, where PnEP~,ry),>(f). For each
n, let Un = uSn be a COO function obtained from Lemma 3.1 for en = 1/2rn

• We
claim that

00

f*:= L unQn
n~O

(3.5)

is an extension of class Ck of the function f to f1lIN.
Since Un 1£= 1, we get f* = f on E. Take 0: E ~~ such that 10:1 ~ k. Then

we obtain
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where En := {X E ~N : dist(x, E) ~ cn}. By applying, in turn, (3.1), (P), and
(3.2) we get

sup ID"'unQnl ~ L (f3a) C",_p2nria-f3! sup IDf3Qnl
~N f3~'" ~

~y f3~'" (;) C"'_f3 2nrl"'-f31 IIDf3QnIIE

~ M 2 2nrl
"'l IIQn liE' (3.6)

where M 2 = M 2(E, a, f) > 0 is an appropriate constant. By the hypothesis

and, consequently, by (3.6)

sup ID"'unQnl ~M4/2nr(k-I"'I)+np.

~N

(3.8)

This means that the function f* is of class Ck in ~N.

Take a E ~~, lal = k, and X, y E E, Ilx - yll = b, 8> O. Choose m ~ 1
satisfying

(3.9)

Then, by (3.8) we get

m-l M
ID"'f*(x) - D"'f*(y)1 ~ L ID"'Qn(x) - D"'Qn(y)1 + 2m~' (3.10)

n~O

The mean-value theorem, (P), (3.2), and (3.7) yield

Hence

m-l

ID"'f*(x)-D"'f*(y)I~M68L 2n(r-p)+M58P/r.
n~O

Therefore, by applying (3.9)

ID"i*(x) - D"'f*(y)1 ~ M 7 8P/r, provided 0 < p < r,
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(for sufficiently small b), provided p = r.
The case ff = C(f can be proved along similar lines by using (3.3) instead

of (3.2).

4. DISTRIBUTION OF ZEROS OF THE POLYNOMIALS OF BEST

ApPROXIMATION TO A FUNCTION OF CLASS Ck
: UNIFORM NORM CASE

Let E be a compact subset of the complex plane with continuous Leja's
extremal function L E • If E oo denotes the unbounded connected component
of C(f\E then

{
I,

LE(z) = G( )exp z,

where G is the Green function of E oo with a pole at infinity ([8, p. 280],
see also [18]).

In this section the subscript E in the symbol of the norm is omitted (i.e.,
11·11 = 11·11 E)' Let W(E) denote the closure of the space &'(C(f) IE in the norm
11·11, where &,(C(f)=Un;"O&:'(C(f). According to Mergelyan's theorem W(E)
coincides with the set-of functions continuous on E that have analytic
extension to the interior of C(f\Eoo . We are interested only in functions from
W(E) therefore it will be assumed that C(f\E = E oo .

Let tn be the usual nth Chebyshev polynomial of E, that is,

Iitn II = min{ IIPII :P E &:,(C(f), P is monic}. (4.1 )

Since LEis continuous, the transfinite diameter d = d(E) of E, being equal
(see, e.g., [8, p. 267]) to the Chebyshev constant t(E) :=limn-->00 IltnI1 1

/
n, is

positive. We assume that the following inequality is fulfilled:

(4.2)

where c> 0 and .Ie ~ 0 are constants depending only on E. (This inequality
will be discussed more precisely later in this section.)

LEMMA 4.1. Let a polynomial P(z) = anzn+ ... + ao have no zeros in
E R := {LE(z) < R}, R> 1. Then

(4.3 )
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Proof Let the sequence {Zm};;" be Leja's extremal sequence associated
with E (its existence has been shown in [9J) satisfying

ZEE, m~ 1

and

m -> 00

where lm(z) := (z - zo) ... (z - Zm -I), m ~ 1. It was mentioned by Plesniak
[13, Lemma 1.4J that if all zeros of the polynomial P(z) =
an(z - cd··· (z - cn), an # 0, are contained in E oo then

lanl dnLE(cd···LE(cn)= lim IP(zo)",P(zm_I)II/m.
m -> 00

This yields the required inequality.

Under the above assumptions and notations we can present the following
refinement of [27].

THEOREM 4.2. Let E have the property (P) and let f E C(E). Put
Rn=n(rk+A+p+l)/n, where k is a positive integer, r is defined by (P), A
satisfies (4.2), and P E (0, r1 Suppose there exists a constant A E C(j such that
for almost all n

(4.4 )

where PnEP~"j'>(f) and zEERn . Then there exists afunctionf*ECk(~2)

such that f* = f on E and for each 0: E ~~, 10:1 = k, D~f* E LiPp/r(E),
provided °< p < r, or D~f* E B(E), provided p = r.

Proof It is enough to prove (3.4) for n = 2m, m ~ 1. Put
Pn(Z) = annzn+ .. , +aon (ann can be equal to zero). By (4.4), from (4.3) we
derive

(4.5)

Since Pn + 1 is a polynomial of best approximation to f we have
IIPn + 1 1l ;£21Ifll. Hence, (4.5) and (4.2) yield
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for almost all n, with M 1 =M1(E, f). Now, since Ilf -Pnll-+O, sub­
stituting the value of R n we get

Ilf - PnII ;;i; M 1 Crk;p+ 1 + (n + l)lrk+p+1 + ... )

and, by putting n = 2m

(4.6)

It seems to be interesting to minimize the exponent in the estimation of
R w First, assume that L E = (/J E has (HCP) and take into consideration the
number r from (2.3). By Remark 3.2, in this case it is the same number r
as in (P). If each connected component of E has its diameter not smaller
than a fixed positive number then r;;i;2 (see [19, Lemma 1]). In some
special cases we can take r = 1. For example, let E satisfy the following
condition:

(B) there exists a constant b > 0 such that for each Z E E there exists
zE E such that the closed ball B(z, b) c E and Z E B(z, b).

For every W E ~ there exists Z E E satisfying IW - zi = dist(w, E). In view of
(B) we get

LE(w);;i; L B(z,b)(W) = max(l, Iw - zl/b).

Therefore we have (2.3) with r = 1.
This observation and Cauchy integral formula lead to the classical

Bernstein inequality (see, e.g., [4, p. 91]):

IIP'II B(o,1);;i; n IIPII B(O, 1)' P E &:.(~).

If E= [-1,1] then LE(z)= Iz+~I, the branch of the square root

is chosen to satisfy Iz +~I~ 1 on ~. Thus, for a point WE ( -1, 1) we
obtain L E (z);;i;I+K w <5, for Iz-wl;;i;<5=b(w)<min(ll-wl, 11+wl). This
leads, via (3.2), to another Bernstein's inequality (see, e.g., [4, p. 91]):

1P'(z)I;;i;Cn IIPll c-1,1], P E &:.(~), Izi ;;i; 1 - 8,

where the constant C deRends on small 8 > O. On the other hand, since
L[ -1,1](1 + 8) = 11 + 8+ )8(2 + 8)1, it is visible that r = 2 is the smallest
possible in (2.3) for L C- 1,1]'

Now, devote some remarks to the inequality (4.2). If L E has (HCP) then,
repeating the argument of the proof of [19, Theorem 1] we get
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for s~ 3,

In particular, if E is connected and contains more than one point then
)"E [0,1/2), cf. [6]. If additionally Cfl\E oo is convex then A=O, see [16].

It is worthwhile to study whether the estimation of R n of Theorem 3.2
is sharp.

EXAMPLE 4.3 (the idea is taken from the proof of Bernstein's lethargy
theorem, e.g., [4, p. 127J). Take E=B(O, 1) and put Rn=n(k+pl/n (in this
case we have r=l and A=O), where pE(O, 1]. For an=1/3n(k+ p) define
bn :=an_1-an>0 and the functionf(z) :=L~=1 bn z 3n. We claim that the
polynomial PAz) = L~= 1 bnz3n is a polynomial of best uniform approxima­
tion to f in the space &1 (Cfl), 3s ~ 1< 3S + 1. Indeed, for the points

- ;"j/35+ I 0 <. 2 3s + 1 h (f - P)( ) - (-1)j d -zjs-e , =J< , we ave s Zjs - as an , conse
quently

00

as = l(f- Ps)(ZjS) I~ Ilf - Ps II ~ L Ibn I= an'
n=s+l

Hence, by [21, Theorem II 2.1 J we get our claim. Since
s

IIPsIIER3s~ (3 k+P -l) L 3(k+p)(s3n- S

-n)

n=1

~ (3 k+P - 1) [2 +:t: (3 s(k+ p))l-2nI
3s,

the sequence {liPs II ER3J is bounded. Thus, applying Theorem 4.2 we obtain
that f can be extended to a function of class Ck

-
1 in ~2. On the other

hand, since we have (4.7), proceeding along the same lines as in the proof
of Theorem 3.3 we can construct an extension of f of class Ck

• Therefore
the estimation of R n is not exact, but to obtain (4.6) we need this "super­
fluous unity."

5. THE BERNSTEIN-MARKOV INEQUALITY

Let fl be a positive finite Borel measure defined on a compact subset E
of y{N. The pair (E, fl) is said to satisfy Leja's type polynomial condition
(L*) if for every family g; c.o/'(y{N) such that

fl({ZEE: sup IP(z)l=c:o})=O
Peg;

and for every b:> 1 there exists an open neighbourhood U of E and a
positive constant M such that

sup IP(z)1 ~Mbdegp, PElF.
ZE U

We recall two versions of the Bernstein-Markov inequality.
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LEMMA 5.1 ([20] in the complex case and [12] in the real one). Let
(E, fl) satisfy (L *). If :ff = ~ we suppose additionally that

fl(E n B(z, t)) >0, for each t > 0 and z E S, (5.1 )

where S is a subset E such that IIPIIE= IIPlls, for every PE[JJ(~N). (For
:ff = fll this assumption is not necessary, see [12].) Then for every a> 1
there exists a constant Cp> 0 such that for every P E ~(:ffN), n ~ 1, we have

IIPIIE;?; Cpan IIPllp,
IIPIIE;?; Cpan IIPII~/p,

provided p ~ 1, or

provided 0 < p < 1.

(5.2)

(5.3 )

LEMMA 5.2 ([5, Theorem 2] and Siciak, personal communication). Let
(E, fl) satisfy the following "density condition"

(D) there exist positive constants C and m such that for each z E Sand
tE (0,1] it holds

If, moreover, (jjE has (HCP) then there exists a constant Cp> 0 and an
exponent I such that for each P E ~(:ffN) we have

IIPIIE;?; Cpn l IIPllp,
IIPIIE;?; CpnIIIPII~/P,

provided p ~ 1, or

provided 0 < p < 1.

(5.4 )

(5.5)

By the kind permission of Professor J. Siciak, this proof is presented for
a convenience of the reader. Let P E ~(:ffN). Take z E S such that
IP(z)1 = IIPIIE' For wEB(z, t)nE, tE (0,1], by applying in turn the mean­
value theorem, the Bernstein-Walsh inequality (2.2) with (HCP), and
Markov's inequality (3.2) we obtain

IP(z) - P(w)1 ;?; Mnrt(l + I(t1/rt IIPIIE'

Put t = l/(l(n y. Then

IIPIIE-IP(w)1 ;?;M: IIPIIE'
I(

We can take I( big enough to satisfy Me < I(r. Therefore

O<p<oo.

According to the condition (D), by integrating the above inequality on
B(z, l/(l(nnnE we get the result.
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Remark 5.3. Goetgheluck [5, Theorem 2] has proved that if E is a
uniformly polynomially cuspidal (briefly (UPC) subset of .YiN (for the
definition and properties see [10]) and if Ji is the Lebesgue measure then
inequalities (5.4) and (5.5) hold. An inspection of Goetgheluck's proof per­
mitted Siciak to restate the lemma in the more general setting. Actually,
one can show that if E is (UPC) and Ji is the Lebesgue measure then the
pair (E, J1) satisfies (D). Moreover, in [21] Siciak has given an example
a Cantor type set E whose extremal function has (HCP) (evidently E is not
(UPC) and the pair (E, Ji), where Ji is the one-dimensional Lebesgue
measure, fulfills (D).

As an immediate consequence of Lemma 5.2 and Theorem 3.3 we obtain
the following

COROLLARY 5.4. Let (E, Ji) satisfy (D) and let Ij) E have (HCP). If
f E C(E) and one of the following conditions is fulfilled

distp(f, .9;,(.YiN» = O(l/n rk + l+ p
),

distp(f, .9;,(.YiN» = O(l/nP(rk+l+ pl ),

for p ~ 1, or

for 0 <p < 1,

then there exists a function f* E Ck(~N) (or f* E Ck(~2N) in the case
X =~) such that f* = f, Ji = a.e. on E and for any a E.;z~ (or a E .;z~),

lal = k, either Dj* E LiPp/r(E), provided 0 < p < r, or Dj* E B(E), provided
p=r.

We conclude this section with an improvement of Bernstein's result
on quasianalytic functions. A function f E Lp(E, f.1), 0 < P -;£ 00, is called
p-quasianalytic in the sense of Bernstein if there exists an increasing
sequence of integers {nJ such that

lim sup distp(f, .9;,j(xN)) l/nj < 1.
j ----+ 00

In this case we shall write f E Bp(E, {nJ). A wide description of properties
of oo-quasianalytic functions can be found in [11]. The reader is also
referred to [12, 14] (the Orlicz space case).

PROPOSITION 5.5 (cf. [11, Theorem 9.3; 10, Remark 7.3]). Let (E, f.1)
have the property (D) and let cP E have (HCP) (for the case p= 00 it is
enough to assume that E has the property (P». Let fEBp(E, {nj }) and

lim sup (In nj + 1 )/nj = O.
j----+ 00

(5.6)

Then there exists a function f* E C OO(~N) (f* E C OO(~2N) if X =~) such
that f* = f, Ji-a.e. on E.
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Proof for p E [1, 0Ci) and :% = rJt (the other cases are analogous). By
(5.6), for any a> lone can find ia such that

i> ia· (5.7)

Since f E Bp(E, {nj } ) we have also

Ilf - p~p> lip ~ M 1 1J nj
, (5.8)

where °< 1J < 1, M 1 > 0, and p~p> is a fixed polynomial from P~P~(f),
j j,

i= 1, 2, .... The extremal function of E has (Rep), hence

(5.9)

Thus, for (j = l/nj + 1 the set

{ZE 'flN: dist(z, E) < Cj:= M 2/nj+l}

is contained in E 1 + l/nj+l' To every Cj there corresponds a function
UjE COO(~N) satisfying the conditions of Lemma 3.1. Put

00

f* = L ujQj,
j~O

for Q '= p<p> and Q -'= p<p> - p<p> By repeating the proof of inequalityo . nl } . nj + 1 nj'

(3.6) we get, for a fixed a E.?l'~,

(5.10)

where M 3 = M 3(E, a). From (5.4) and (5.8) we derive

IIQj IIE~ M4n~+ 1 IIQj lip ~ M5n~+ 11J
nj

.

This, together with (5.7) and (5.10), yields

sup ID"ujQjl ~M6(al"lr+l1Jtj.
iJiIN

The quantity in parentheses can be chosen to be less than 1, therefore the
series D"f* is uniformly convergent on ~N. Since the reasoning is valid for
any multi-index a, the function f* is COO on rJtN.
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Let again E be a compact subset of the plane "t and fl. a positive Borel
measure on E.

The purpose of this section is to present in unified form results
concerning the relationship between the distribution of zeros of the poly­
nomials of best approximation to differentiable and holomorphic functions
in the case of Lp-approximation, for all positive p. First we shall deal with
functions of class Ck

.

By Wp(E, f.1) we denote the closure of the space Y'("t) IE in the norm
11·11p' Take p>O and a function fE Wp(E,fl.). For each n;;;;O the set
P~,~>(f) is nonempty and we can choose a sequence P,;P> E P~,~>(f) such
that

when n tends to infinity. (6.1 )

We also choose a sequence of p-Chebyshev polynomials of E that is the
sequence {t~P>} satisfying

(6.2)

THEOREM 6.1. Let (E, fl.) satisfy (D) and let rJ>E have (HCP). Let
f E Wp(E, fl.), p > O. Put

R
n

= n(rk+ l+ 21+ P+ 1l/n,

R
n
= n(rk+l+21+ p +l/PJ/n,

provided 1~p < 00, or

provided 0 <p < 1,

where k is a positive integer, r is defined by (2.3), A by (4.2), I by (5.4) or
(5.5), and pE(O,r]. Suppose there exists a constant AE"t such that for
almost all n

Then one can find a function f* E Ck(~2) such that f* = f, fl.-a.e. on E, and
for any IX E.;z~, IIXI = k, either Dj* E LiPp/r(E), provided 0< p < r, or
Daf* E B(E), provided p = r.

Proof for p;;;; 1. From Lemma 4.1 we derive

On the other hand, the definition of a p-Chebyshev polynomial yields

(6.4 )
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and, since IIP~~>!llp~21Ifllp, via (5.4) we obtain

Applying both above inequalities and (4.2), from (6.3) we get the
estimation

where M 2 is a suitable constant independent of n. From this, proceeding
along the same lines as in the proof of Theorem 4.2 we derive

Ilf - pi!> lip ~ M 3/2m(rk+ p +/),

and, consequently, by (5.4),

IIPit> - pitidlE ~ M 4/ 2m(rk+
p

). (6.6)

In view of Lemma 3.1, for 8m = M s/2
rm (where M s is defined in the same

way as M 2 of (5.9)) we find corresponding functions Um = uem ' Thus, by
(6.6), repeating the argument of the proof of Theorem 3.3 we show that the
function

00

f* = L um(pi!> - pitit)
m=!

(6.7)

is the extension off we seek. The case 0 < p < 1 can be proved in a similar
way.

COROLLARY 6.2 (an Lp-analogue to [26, Theorem 9J), Let (E, fl)
satisfy (D) and let ep E have (RCP). Let f E Wp(E, fl)for some p > O. If there
exists AECC such that P~P>(z)#A on ERn' Rn>l, where the sequence
{R;;n} is rapidly decreasing to zero, then there exists a function
f* E coo(.~2) such that f* = f, fl-a.e. on E.

Proof Fix k~l and define a:=rk+A+21+p+l, for p~l, or
a := rk + A+ 21 +P+ lip, for 0 <p < 1. By the hypothesis nalR~ ~ 0, hence,
for almost every n we have na/n ~ Rn' Then, Theorem 6.1 implies that f*
defined by (6.7) is of class Ck

. Since k is arbitrarily taken, we get the
assertion.

It has been mentioned in the first section that Plesniak [13 J extended
Bernstein's theorem (case of holomorphic functions) to the case of
Lz-approximation. We shall now give an extension of this result (and an
analogue to [26, Theorem 3J) to the case of any Lp-norm.
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R> 1,

Observe first that a standard reasoning (e.g., [24, p. 78]) and Lemma
5.1 lead to the following version of the Bernstein-Walsh theorem (see also
[14, Theorem 5.2]).

LEMMA 6.3. Let (E, {1) satisfy (L *) and let the condition (5.1) be
fulfilled. If for f E L p(E, {1) it holds

lim sup distp(f, .?J,,(~) )1/n =~,
n~OO R

then there exists a function f* holomorphic in E R such that f* = f, Il-a.e.
on E.

From this we derive the last result.

THEOREM 6.4. Let (E, {1) satisfy (L*) and let the condition (5.1) be
fulfilled. Let f E Wp(E, f..I.) and R> 1. Set P~P>(z)= annzn+ ... + aOn (ann
can be equal to zero). The following statements are equivalent.

(1 0) There exists a function f* holomorphic in E R such that f* = f,
{1-a.e. on E.

(2°) For every R 1 E(1,R) there exists AE~ such that P~P>(z)#A,

Z E ER[' for almost all n.

(3°) limsuPn~oo lann I
1
/
n;::;;ljdR.

Prooffor p;?; 1. (1°) => (2°). Without loss of generality we assume that
f is holomorphic in ER . Take R 1 E (1, R). The Bernstein-Walsh theorem
(see, e.g., [24]) yields

Therefore, since Ilf - P~P> lip;;:; M 1 Ilf - P~oo >II E (for all n;?; 1) we have got

IIP~oo> _ P~P>llp;::;; M2jR~,

for every R2E (R 1 , R) and n;?; nR2" Now, we apply the Bernstein-Walsh
inequality (2.2) and (5.2) to obtain

II p<oo>-P<P>II- sRn IIp<oo>-P<P>11
n n ERl - 1 nnE

anRn
sM anRn IIP<OO>-P<P>II sM __1
- 3 1 n n p- 4 Rn '

2

where a> 1 is chosen to satisfy aR 1 <R2. Thus, the sequence {IIP~P>IIER)

is bounded and we can put A = 1+ sup{ II P~P>II ER[ }.
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(2°) => (3°). For R 1 E (1, R) and a> 1, from Lemma 4.1 and Lemma 5.1
we get

for almost all n. Since a can be chosen arbitrarily close to one and R 1 close
to R, we have (2°).

(3°) => (10). To each R 1 E (1, R) we find an integer nl such that

Ianni ~ 1jdnR7,

Then, applying also (6.4) we obtain

II! -P~~>lllp~ II! -P~P>llp+ lannlllt~P>llp

~ II!-P<P>II +M~- n P 1 dnRn'
1

(6.8)

Choose I> > 0 satisfying Re := dRJid + I> > 1. Since II tn II ¥n ~ d, there exists
n2 > n1 such that

(6.9)

In view of! E Wp(E, J1), from (6.8) and (6.9) we get

Hence, according to Lemma 6.3 we find a function!e,RI holomorphic in ERe
satisfying!e,R1IE=f. Since Re~Rl' for I>~O and R 1 was arbitrarily taken
from (1, R) the function can be holomorphically extended to the whole
level set ER'
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